
Multigrid Methods for Saddle Point Problems

Given (f , g) ∈ Vk×Qk, we want to construct multigrid methods
for

(∗) Bk(v, q) = (f , g)

Apply pre-smoothing steps with initial guess (v0, q0) to ob-
tain an approximate solution (v†, q†) of (∗).

Transfer the residual of (v†, q†) to a coarse grid and apply
the multigrid algorithm on the coarse grid to find an approx-
imate correction of (v†, q†).

Apply post-smoothing steps to the corrected approximate
solution of (∗) to obtain the final output.
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Given (f , g) ∈ Vk×Qk, we want to construct multigrid methods
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Two Ingredients
Intergrid transfer operators
Efficient smoother
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Multigrid Methods for Saddle Point Problems

Given (f , g) ∈ Vk×Qk, we want to construct multigrid methods
for

(∗) Bk(v, q) = (f , g)

Coarse-to-Fine Operator

Ikk−1 : Vk−1 ×Qk−1 −→ Vk ×Qk is the natural injection.

Fine-to-Coarse Operator

Ik−1
k : Vk × Qk −→ Vk−1 × Qk−1 is the transpose of Ikk−1 with

respect to the mesh-dependent inner product:[
Ik−1
k (v, q), (w, r)

]
k−1

=
[
(v, q), Ikk−1(w, r)

]
k

for all (v, q) ∈ Vk ×Qk and (w, r) ∈ Vk−1 ×Qk−1



Multigrid Methods for Saddle Point Problems

Given (f , g) ∈ Vk×Qk, we want to construct multigrid methods
for

(∗) Bk(v, q) = (f , g)

Coarse-to-Fine Operator

Ikk−1 : Vk−1 ×Qk−1 −→ Vk ×Qk is the natural injection.

Ritz Projection Operator

The operator P k−1
k : Vk ×Qk −→ Vk−1 ×Qk−1 is the transpose

of Ikk−1 with respect to the variational bilinear form B(·, ·).

B
(
P k−1
k (v, q), (w, r)

)
= B

(
(v, q), Ikk−1(w, r)

)
∀ (v, q) ∈ Vk ×Qk, (w, r) ∈ Vk−1 ×Qk−1
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Smoothing Step for (∗)
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(
(f , g)−Bk(vold, qold)
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Sk : Vk ×Qk −→ Vk ×Qk is a smoother.
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)
Sk : Vk ×Qk −→ Vk ×Qk is a smoother.

Question How do we choose Sk?
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SkBk should be related to a scale of mesh-dependent
norms on Vk×Qk so that we can prove smoothing proper-
ties.



Multigrid Methods for Saddle Point Problems

Given (f , g) ∈ Vk×Qk, we want to construct multigrid methods
for

(∗) Bk(v, q) = (f , g)

Smoothing Step for (∗)

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
SkBk should be related to a scale of mesh-dependent
norms on Vk×Qk so that we can prove smoothing proper-
ties.

The scale of mesh-dependent norms should be related to
a scale of Sobolev norms so that we can prove approxima-
tion properties without using H2 regularity.



Smoother for Post-Smoothing

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)



Smoother for Post-Smoothing

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
Sk = γkBkC

−1

k

where the operator Ck : Vk×Qk −→ Vk×Qk is SPD with respect
to the mesh-dependent inner product [·, ·]k and satisfies

Stokes[
Ck(v, q), (v, q)

]
k
≈ ‖(v, q)‖2

E
= |v|2H1(Ω) + ‖q‖2L2(Ω)

Darcy[
Ck(v, q), (v, q)

]
k
≈ ‖(v, q)‖2

E
= ‖v‖2L2(Ω) + ‖q‖2H1(Ω;Th)

γk = (constant)h2
k is a damping factor.
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Stokes[
Ck(v, q), (v, q)

]
k
≈ ‖(v, q)‖2

E
= |v|2H1(Ω) + ‖q‖2L2(Ω)

We can define
C−1

k (v, q) = (L−1

k v, h−2
k q)

where L−1

k is an optimal preconditioner (DD or MG) of the dis-
crete Laplace operator associated with Vk.
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where L−1

k is an optimal preconditioner (DD or MG) of the dis-
crete DG Laplace operator associated with Qk.
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Smoother for Post-Smoothing

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
Sk = γkBkC

−1

k

Note that

(vnew, qnew) = (vold, qold) + γkBkC
−1

k

(
(f , g)−Bk(vold, qold)

)
is just Richardson relaxation for the equivalent SPD system

BkC
−1

k Bk(v, q) = BkC
−1

k (f , g)

The error propagation operator Rk : Vk × Qk −→ Vk × Qk for
one post-smoothing step is given by

Rk = Idk − γkBkC−1
k Bk

where Idk is the identity operator on Vk ×Qk.



Smoother for Post-Smoothing

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
Sk = γkBkC

−1

k

Note that

(vnew, qnew) = (vold, qold) + γkBkC
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k

(
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)
is just Richardson relaxation for the equivalent SPD system

BkC
−1

k Bk(v, q) = BkC
−1

k (f , g)

The error propagation operator Rk : Vk × Qk −→ Vk × Qk for
one post-smoothing step is given by

Rk = Idk − γkBkC−1
k Bk

The operator BkC−1

k Bk : Vk ×Qk −→ Vk ×Qk plays a key role.
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We can choose the damping factor

γk = (constant)h2
k

so that the spectral radius of the damped operator γkBkC−1
k Bk

that appears in the error propagation operator

Rk = Idk − γkBkC−1

k Bk

of one post-smoothing step is ≤ 1.



Properties of BkC
−1

k Bk

We can choose the damping factor

γk = (constant)h2
k

so that the spectral radius of the damped operator γkBkC−1
k Bk

that appears in the error propagation operator

Rk = Idk − γkBkC−1

k Bk

of one post-smoothing step is ≤ 1.

This is similar to standard smoothers for second order SPD
problems and therefore Rk will have similar smoothing prop-
erties.



Mesh-Dependent Norms

One of the norms in the scale of mesh-dependent norms
related to SkBk is equivalent to the energy norm so that
we can prove contraction number estimates in the energy
norm.

The scale of mesh-dependent norms is also related to frac-
tional order Sobolev norms so that we can prove an ap-
proximation property for norms other than the L2(Ω) norm,
for which the duality argument does not require H2 regu-
larity.



First Scale of Mesh-Dependent Norms

For 0 ≤ s ≤ 1, we can use the SPD operator BkC−1

k Bk to define
a scale of mesh-dependent norms:

|||(v, q)|||s,k =
[
(BkC

−1
k Bk)

s(v, q), (v, q)
] 1

2
k

∀ (v, q) ∈ Vk ×Qk
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(α ∈ (1
2 , 1] is the index of elliptic regularity.)
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Smoother for Pre-Smoothing

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
Sk = γkC

−1

k Bk

The error propagation operator R∗k : Vk × Qk −→ Vk × Qk for
one pre-smoothing step is given by

R∗k = Idk − γkC−1

k B
2
k

The choice of the pre-smoother is motivated by the relation

B
(
Rk(v, q), (w, r)

)
= B

(
(v, q), R∗k(w, r)

)
for all (v, q), (w, r) ∈ Vk ×Qk
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B
(
(v, q), (w, r)

)
|||(w, r)|||2−s,k

∀ (v, q) ∈ Vk ×Qk
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Convergence Analysis



Smoothing Properties

Post-Smoothing (first scale)

|||(Rk)m(v, q)|||1,k ≤ C(hk
√
m)−α|||(v, q)|||1−α,k

Spectral Theorem

Calculus

|||(v, q)|||s,k =
[
(BkC

−1
k Bk)

s(v, q), (v, q)
] 1

2
k

Rk = Idk − γkBkC−1

k Bk



Smoothing Properties

Post-Smoothing (first scale)

|||(Rk)m(v, q)|||1,k ≤ C(hk
√
m)−α|||(v, q)|||1−α,k

Pre-Smoothing (second scale)

|||(R∗k)m(v, q)|||∗1+α,k ≤ C(hk
√
m)−α|||(v, q)|||∗1,k

duality



Approximation Properties

Approximation Property (first scale)

|||(Idk − Ikk−1P
k−1
k )(v, q)|||1−α,k ≤ Chαk |||(v, q)|||1,k

elliptic regularity

Aubin-Nitsche duality argument

properly weighted mesh dependent inner product



Approximation Properties

Approximation Property (first scale)

|||(Idk − Ikk−1P
k−1
k )(v, q)|||1−α,k ≤ Chαk |||(v, q)|||1,k

Approximation Property (second scale)

|||(Idk − Ikk−1P
k−1
k )(v, q)|||∗1,k ≤ Chαk |||(v, q)|||∗1+α,k

duality



Convergence Results

The smoothing and approximation properties lead to the uni-
form convergence of the two-grid algorithm and hence the W -
cycle algorithm provided the number of smoothing steps (inde-
pendent of mesh size) is sufficiently large.

Asymptotically

contraction number ≤ Cm−α

C is independent of h.

m is the number of pre-smoothing and post-smoothing steps

α is the index of elliptic regularity. (α = 1 for convex Ω)



Nonsymmetric Saddle Point Problems

The results for symmetric saddle point problems can be ex-
tended to nonsymmetric saddle point problems provided we
have the following stability estimates:

sup
(w,r)∈Vk×Qk
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convective term
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The results for symmetric saddle point problems can be ex-
tended to nonsymmetric saddle point problems provided we
have the following stability estimates:
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It only requires a simple modification of the smoothers.



Nonsymmetric Saddle Point Problems

(vnew, qnew) = (vold, qold) + Sk
(
(f , g)−Bk(vold, qold)

)
Post-Smoothing

Sk = γkB
t
kC
−1

k Bk (Sk = γkBkC
−1

k Bk)

Pre-Smoothing

Sk = γkC
−1

k B
t
kBk (Sk = γkC

−1

k B
2
k)

Bt
k : Vk × Qk −→ Vk × Qk is the transpose of Bk with respect

to the mesh-dependent inner product [·, ·]k.[
Bk(v, q), (w, r)

]
k

=
[
(v, q), Bt

k(w, r)
]
k

for all (v, q), (w, r) ∈ Vk ×Qk



Nonsymmetric Saddle Point Problems

The proofs of the smoothing properties remain the same.

The proofs of the approximation properties require duality argu-
ments for both the saddle point problem and the adjoint prob-
lem.



V -Cycle Algorithm

Numerical results indicate that the V -cycle algorithm, where
the (k − 1)-st level iteration is applied once in the coarse grid
correction step, is also uniformly convergent.



V -Cycle Algorithm

Numerical results indicate that the V -cycle algorithm, where
the (k − 1)-st level iteration is applied once in the coarse grid
correction step, is also uniformly convergent.

Recall that the post-smoothing step is just Richardson relax-
ation applied to the SPD system

BkC
−1

k Bk(v, q) = (f , g)

and the SPD operator behaves like a (nonstandard) second or-
der differential operator.

It should be possible to establish results for the V -cycle algo-
rithm by using techniques from the additive multigrid theory for
nonstandard finite element methods.

B. 2002, 2004



Numerical Results



Numerical Results

Stokes and Lamé

Vk ×Qk = P2 – P1 Taylor-Hood finite element pair

A V (2, 2) multigrid Laplace solve is used in the construction of
C−1

k (v, q) = (L−1
k v, h−2

k q).

Unit Square L-Shaped



Numerical Results

Stokes System

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.82 0.86 0.86 0.86 0.86 0.86
(2, 2) 0.76 0.78 0.78 0.78 0.78 0.78
(4, 4) 0.66 0.68 0.69 0.69 0.69 0.69
(8, 8) 0.55 0.56 0.56 0.56 0.56 0.56

(16, 16) 0.38 0.39 0.39 0.39 0.39 0.39
(32, 32) 0.19 0.19 0.19 0.19 0.19 0.19

Contraction numbers for the unit square
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Stokes System

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.88 0.90 0.90 0.90 0.90 0.90
(2, 2) 0.81 0.83 0.84 0.84 0.84 0.84
(4, 4) 0.73 0.75 0.75 0.75 0.75 0.75
(8, 8) 0.63 0.65 0.65 0.65 0.65 0.65

(16, 16) 0.48 0.49 0.49 0.49 0.49 0.49
(32, 32) 0.28 0.29 0.29 0.29 0.29 0.29

Contraction numbers for the L-shaped domain
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Stokes System

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.87 0.90 0.90 0.90 0.90 0.90
(2, 2) 0.76 0.76 0.79 0.80 0.80 0.80
(4, 4) 0.66 0.70 0.70 0.70 0.70 0.70
(8, 8) 0.55 0.57 0.57 0.58 0.58 0.58

(16, 16) 0.38 0.40 0.40 0.40 0.40 0.40
(32, 32) 0.19 0.19 0.20 0.20 0.20 0.20

Contraction numbers for the unit square
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Lamé System (µ = 1, λ = 500, ν = 0.499)

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.92 0.93 0.93 0.93 0.93 0.93
(2, 2) 0.93 0.93 0.93 0.93 0.93 0.93
(4, 4) 0.88 0.89 0.90 0.90 0.90 0.90
(8, 8) 0.81 0.83 0.83 0.83 0.83 0.83

(16, 16) 0.70 0.72 0.72 0.72 0.72 0.72
(32, 32) 0.53 0.54 0.54 0.54 0.54 0.54
(64, 64) 0.31 0.32 0.32 0.32 0.32 0.32

Contraction numbers for the unit square
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Lamé System (µ = 1, λ = 500, ν = 0.499)

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.94 0.95 0.95 0.95 0.95 0.95
(2, 2) 0.94 0.95 0.95 0.95 0.95 0.95
(4, 4) 0.91 0.92 0.92 0.92 0.92 0.92
(8, 8) 0.85 0.87 0.87 0.87 0.87 0.87

(16, 16) 0.76 0.79 0.79 0.79 0.79 0.79
(32, 32) 0.62 0.64 0.64 0.64 0.64 0.64
(64, 64) 0.43 0.44 0.44 0.44 0.44 0.44

Contraction numbers for the L-shaped domain
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Lamé System (µ = 1, λ = 500, ν = 0.499)

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.92 0.94 0.94 0.94 0.94 0.94
(2, 2) 0.93 0.94 0.94 0.94 0.94 0.93
(4, 4) 0.88 0.90 0.90 0.90 0.90 0.90
(8, 8) 0.81 0.83 0.84 0.84 0.84 0.84

(16, 16) 0.70 0.73 0.73 0.73 0.73 0.73
(32, 32) 0.53 0.55 0.54 0.55 0.55 0.55
(64, 64) 0.31 0.32 0.32 0.32 0.32 0.32

Contraction numbers for the unit square
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Lamé System (µ = 1, k = 5)

W -cycle algorithm

(m1,m2)\λ λ = 100 λ = 101 λ = 102 λ = 103

(1, 1) 0.96 0.95 0.92 0.93
(2, 2) 0.93 0.93 0.92 0.93
(4, 4) 0.87 0.87 0.88 0.90
(8, 8) 0.76 0.79 0.81 0.83

(16, 16) 0.62 0.67 0.68 0.72
(32, 32) 0.48 0.47 0.49 0.55

Contraction numbers for the unit square
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results

Oseen System

Find (u, p) ∈ [H1
0 (Ω)]2 × L0

2(Ω) such that

a(u, v) + b(v, p) = F (v) ∀v ∈ [H1
0 (Ω)]2

b(u, q) = 0 ∀ q ∈ L0
2(Ω)

a(u,v) =

∫
Ω

[
(∇u : ∇v) + (w · ∇u) · v

]
dx

b(v, p) = −
∫

Ω
(∇ · v)p dx

where the wind function

w =

[
1
1

]



Numerical Results

Oseen System

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(1, 1) 0.91 0.91 0.91 0.91 0.91 0.91
(2, 2) 0.84 0.83 0.83 0.83 0.83 0.83
(4, 4) 0.71 0.71 0.71 0.71 0.71 0.71
(8, 8) 0.59 0.61 0.61 0.61 0.61 0.61

(16, 16) 0.45 0.47 0.47 0.47 0.47 0.47
(32, 32) 0.28 0.29 0.29 0.29 0.29 0.29

Contraction numbers for the L-shaped domain
in the energy norm ‖v‖H1(Ω) + ‖q‖L2(Ω)



Numerical Results
Darcy System

We take K to be the identity matrix.

Vk ×Qk = RT1 × P1 Raviart-Thomas finite element pair

A V (4, 4) multigrid DG Laplace solve is used in the construction
of C−1

k (v, q) = (h−2
k v, L−1

k q).

Ω is either a unit square or an L-shaped domain.



Numerical Results
Darcy System

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.80 0.81 0.81 0.81 0.81 0.81
(20, 20) 0.66 0.67 0.67 0.67 0.67 0.67
(40, 40) 0.47 0.48 0.48 0.48 0.48 0.48
(80, 80) 0.24 0.24 0.24 0.24 0.24 0.24

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.80 0.82 0.81 0.82 0.82 0.82
(20, 20) 0.66 0.68 0.68 0.68 0.68 0.68
(40, 40) 0.47 0.48 0.48 0.48 0.48 0.48
(80, 80) 0.24 0.25 0.25 0.25 0.25 0.25

Contraction numbers for the unit square
in the energy norm ‖v‖L2(Ω) + ‖q‖H1(Ω;Th)



Numerical Results
Darcy System

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.81 0.82 0.82 0.82 0.82 0.82
(20, 20) 0.70 0.70 0.70 0.70 0.70 0.70
(40, 40) 0.51 0.51 0.51 0.51 0.51 0.51
(80, 80) 0.28 0.28 0.28 0.28 0.28 0.28

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.81 0.82 0.82 0.82 0.82 0.82
(20, 20) 0.70 0.70 0.70 0.70 0.70 0.70
(40, 40) 0.51 0.52 0.51 0.51 0.51 0.51
(80, 80) 0.28 0.28 0.28 0.28 0.28 0.28

Contraction numbers for the L-shaped domain
in the energy norm ‖v‖L2(Ω) + ‖q‖H1(Ω;Th)



Numerical Results
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Numerical Results
Darcy System with a Convective Term

Find (uk, pk) ∈ Vk ×Qk such that∫
Ω
uk · v dx+

∫
Ω

(∇ · v)pk dx = 0 ∀v ∈ Vk∫
Ω

(∇ · uk)q dx−
∫

Ω
(b · ∇hkpk)q dx = G(q) ∀ q ∈ Qk

where

b =

[
2
−1

]



Numerical Results
Darcy System with a Convective Term

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.80 0.81 0.81 0.81 0.81 0.81
(20, 20) 0.67 0.68 0.67 0.67 0.67 0.67
(40, 40) 0.48 0.48 0.48 0.48 0.48 0.48
(80, 80) 0.24 0.24 0.24 0.24 0.24 0.24

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.80 0.81 0.81 0.81 0.81 0.81
(20, 20) 0.67 0.68 0.67 0.67 0.67 0.67
(40, 40) 0.48 0.48 0.48 0.48 0.48 0.48
(80, 80) 0.24 0.24 0.24 0.24 0.24 0.24

Contraction numbers for the unit square
in the energy norm ‖v‖L2(Ω) + ‖q‖H1(Ω;Th)



Numerical Results
Darcy System with a Convective Term

W -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.81 0.82 0.82 0.82 0.82 0.82
(20, 20) 0.70 0.70 0.70 0.70 0.70 0.70
(40, 40) 0.52 0.52 0.52 0.52 0.52 0.52
(80, 80) 0.29 0.29 0.29 0.29 0.29 0.29

V -cycle algorithm

(m1,m2)\k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

(10, 10) 0.81 0.82 0.82 0.82 0.82 0.82
(20, 20) 0.70 0.70 0.70 0.70 0.70 0.70
(40, 40) 0.52 0.52 0.52 0.52 0.52 0.52
(80, 80) 0.29 0.29 0.29 0.30 0.30 0.30

Contraction numbers for the L-shaped domain
in the energy norm ‖v‖L2(Ω) + ‖q‖H1(Ω;Th)



Concluding Remarks



Summary: A Recipe for Saddle Point Problems

Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀ v ∈ V
b(u, q)− c(p, q) = G(q) ∀ q ∈ Q



Summary: A Recipe for Saddle Point Problems

Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀ v ∈ V
b(u, q)− c(p, q) = G(q) ∀ q ∈ Q

For a saddle point problem arising from a 2m-order elliptic
boundary value problem, we should use a (closed) sub-
space of the Sobolev space Hm(Ω) for the unknown that
comes with elliptic regularity estimates, and a (closed) sub-
space of L2(Ω) for the other component.



Summary: A Recipe for Saddle Point Problems

Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀ v ∈ V
b(u, q)− c(p, q) = G(q) ∀ q ∈ Q

For saddle point problems of the first type, u is the un-
known associated with Hm(Ω). In this case one can use
stable conforming mixed finite element spaces Vk×Qk and
the mesh-dependent inner product should satisfy

[(v, q), (v, q)]k ≈ ‖v‖2L2(Ω)+h
2m
k ‖q‖2L2(Ω) ∀ (v, q) ∈ Vk×Qk



Summary: A Recipe for Saddle Point Problems

Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀ v ∈ V
b(u, q)− c(p, q) = G(q) ∀ q ∈ Q

For saddle point problems of the second type, p is the un-
known associated with Hm(Ω). In this case one can treat
stable conforming mixed finite element spaces Vk × Qk
for the (more popular) dual formulation as nonconforming
mixed finite element spaces for the saddle point problem,
and the mesh-dependent inner product should satisfy

[(v, q), (v, q)]k ≈ h2m
k ‖v‖2L2(Ω) + ‖q‖2L2(Ω)

for all (v, q) ∈ Vk×Qk (The finite element space Qk should
contain polynomials of degree ≤ m.)



Summary: A Recipe for Saddle Point Problems
For both types of saddle point problems the key is the con-
struction of a preconditioner C−1

k such that[
Ck(v, q), (v, q)

]
k
≈ ‖(v, q)‖2

E
∀ (v, q) ∈ Vk ×Qk

‖(v, q)‖E = ‖v‖Hm(Ω) + ‖q‖L2(Ω) (type-I)

‖(v, q)‖E = ‖v‖L2(Ω;Tk) + ‖q‖Hm(Ω;Tk) (type-II)



Summary: A Recipe for Saddle Point Problems
For both types of saddle point problems the key is the con-
struction of a preconditioner C−1

k such that[
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]
k
≈ ‖(v, q)‖2

E
∀ (v, q) ∈ Vk ×Qk

‖(v, q)‖E = ‖v‖Hm(Ω) + ‖q‖L2(Ω) (type-I)

‖(v, q)‖E = ‖v‖L2(Ω;Tk) + ‖q‖Hm(Ω;Tk) (type-II)

For type-I problems, this involves an optimal preconditioner
for the discrete elliptic operator of order 2m associated
with the conforming space Vk. For type-II problems, this
involves an optimal preconditioner for the discrete elliptic
operator of order 2m associated with the nonconforming
space Qk, where a DG discretization appears naturally.



Summary: A Recipe for Saddle Point Problems
For both types of saddle point problems the key is the con-
struction of a preconditioner C−1

k such that[
Ck(v, q), (v, q)

]
k
≈ ‖(v, q)‖2

E
∀ (v, q) ∈ Vk ×Qk

‖(v, q)‖E = ‖v‖Hm(Ω) + ‖q‖L2(Ω) (type-I)

‖(v, q)‖E = ‖v‖L2(Ω;Tk) + ‖q‖Hm(Ω;Tk) (type-II)

For type-I problems, this involves an optimal preconditioner
for the discrete elliptic operator of order 2m associated
with the conforming space Vk. For type-II problems, this
involves an optimal preconditioner for the discrete elliptic
operator of order 2m associated with the nonconforming
space Qk, where a DG discretization appears naturally.

One can then develop uniformly convergent multigrid algo-
rithms in the energy norm for general polyhedral domains.



Other Examples



Other Examples
Saddle point problems for linear elasticity in the stress-
displacement formulation are examples of type-II prob-
lems.

Stability analysis with respect to mesh-dependent norms
was carried out in Stenberg 1988 for mixed finite element
methods where the symmetry of the stress is weakly en-
forced.



Other Examples
Saddle point problems for the biharmonic equation are also
examples of type-II problems.

Stability analysis of mixed finite element methods with
respect to mesh-dependent norms was carried out in
Babuška-Osborn-Pitkäranta 1980.

The DG methods for the construction of optimal precondi-
tioners are precisely the C0 interior penalty methods for
fourth order problems.



Other Examples
Saddle point problems for the biharmonic equation are also
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The DG methods for the construction of optimal precondi-
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fourth order problems.
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